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From Aviation Safety to Cyber Resilience 
Leveraging aerospace industry’s century-long safety culture for 
cybersecurity 
 
Summary 
Software development has a poor safety record. The number of 
cyberattacks hat risen dramatically since 2004, clearly outrunning the 
growth of the internet itself. In parallel, aviation has a proven track record 
of achieving the highest level of safety and serves as an example even in 
the information technology industry itself. Despite increasing software 
complexity, the existing certification processes for airborne equipment 
manage to assure extremely reliable software. The more recent 
certification process for information technology products applies similar 
methods of formal development but is not as widespread as its aviation 
counterpart. More importantly, the aerospace safety culture is missing. As 
such, information technology can benefit from applying the aerospace 
industry’s methods, procedures and mindset to its development process. 
Due to the similarities of both formal development worlds, the transfer will 
be easier than it may seem. 
 
 
History repeating I 
 
It started Tuesday June 27th, 2017. In the offices of A.P. Møller-Maersk 
around the world, computer screens started to go black. Within a few 
hours, global operations of the world’s largest container shipping company 
— accounting for 20% of the market — had been stopped. It took the 
company ten days to revive its computer system; ten days, during which 
operations were mainly done by hand. And had it not been for a power 
outage in Ghana, causing a single computer to have been offline when 
disaster struck, thus retaining a sole copy of crucial infrastructure data, it 
would have been even worse (see Greenberg, 2018, for the full story on 
Maersk). 
 
Incidents are almost always the result of an unfortunate concatenation of 
weak spots, human error and negligence, and design flaws. Plus a bit of 
bad luck. In Maersk’s case, the latter was the use of a single computer 
with accounting software in the Ukraine — nothing that could reasonably 
have been prevented, unless you are a fundamentalist system 
administrator who forbids any software that is not rolled out through the 
central office (if you are, make sure you are not accountable for 
operational success and profit). But the design flaw was of a different 
order of magnitude. Dubbed EternalBlue, it was a highly critical 
vulnerability in Microsoft Windows, allowing ransomware like NotPetya —  
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the one that hit Maersk — to spread throughout a network without human 
interaction. But no-one could have known. Or could they? 
 
It started Friday May 12th, 2017, early in the morning. By the end of the 
day, more than 200,000 computers all around the world had been 
affected. The banking industry of Spain seemed to have been a hot spot, 
likewise the national health system in the UK. German railways were 
affected, too, displaying red ransomware messages on passenger 
information screens at stations across the country. And had it not been for 
a single hacker, who found a kill switch in the form of an unregistered 
internet domain, the damage caused by WannaCry would have been even 
larger. 
 
Let’s cut it short. No-one could have known. Or could they? 
 
The vulnerability had been publicly announced in April 2017; a patch by 
Microsoft had been available even before that, albeit not for Windows XP, 
for which security support had ceased. Which takes us another step back: 
human error and negligence. The thing that could reasonable have been 
prevented was continuing to use outdated, unsupported and unpatched 
Windows XP machines beyond their expiry dates. 
 
History repeating II 
 
But there is no safety culture in software. Software is cheap. Software 
needs to be updated anyway. Software vendors are not liable for 
anything. Software cannot do any physical harm. As long as we do not 
build our critical infrastructure on software, as long as our economy does 
not depend on it, as long as we do not network security systems or 
medical equipment — what can go wrong? Oh, wait… 
 
Weak spots, human error and negligence, design flaws and bad luck hit 
aviation, too. On March 10th, 2019, Ethiopian Airlines flight 302 crashed 
six minutes after take-off, killing all 157 people aboard. On October 29th, 
2018, Lion Air flight 610 had crashed 12 minutes after take-off, killing all 
189 people aboard. Both flights were operated by a Boeing 737 MAX 
series aircraft, which had entered into service on May 22nd, 2017. 
 
In hindsight, one may question the response after the first accident. Yet, 
the Lion Air crash was the first indication of a fundamental problem with 
the design of the new aircraft and thorough investigations were started, 
leading to a first report in November 2017 and improvement work at 
Boeing’s. The similarities between the Ethiopian Airlines and the Lion Air 
accidents were immediately evident when the second happened. Many  



 

  
 3 

 

 
operators stopped operating their 737 MAX aircraft the day after, and the 
global fleet was grounded within a week. The aircraft will not fly again 
until the design flaw has been removed. The airframe manufacturer is 
responsible for offering the solution and each individual aircraft will not 
take off before the necessary patches have been applied. 
 
Safety culture 
 
There is a safety culture in aviation — although one is tempted to say: 
there still is, as the 737 MAX story represents a narrative of fundamental 
flight mechanical changes to an existing, originally extremely mature and 
safe airframe, the consequences of which are compensated for by 
software. And there is no safety culture in software (see Travis, 2019, for 
an interesting analysis on this). 
 
One can look at the statistics. Since the early 1970s, the number of 
casualties in civil aviation has consistently decreased, despite the 
industry’s growth, especially in emerging markets (data: Aviation Safety, 
2019). 
 

 
 
Cybersecurity tells a different story. Using data breaches as an indication 
for system compromises by hacking or negligence, the numbers have 
been rising since 2004 and have literally exploded during the past three 
years (data: author’s analysis from Information is Beautiful, 2019a). 
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Obviously, information technology has grown at an even more spectacular 
rate than commercial aviation has. But at the same time, airline accidents 
do not go unnoticed, whereas there is a substantial number of unreported 
cases in cyberattacks. Looking at the ratio of incidents to industry size for 
the past fifteen years and indexing at 2004, the security problem of 
information technology is undeniable (reference market size data: 
Internet World Stats, World Bank, 2019). 
 

 
 
Vendor accountability 
 
A safety culture goes hand in hand with vendor accountability. In April 
2017, The Economist pinpointed it: 
 

“The software industry has for decades disclaimed liability for the harm 
when its products go wrong.” 
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The cybersecurity problem cannot be resolved with more technical 
wizardry and claiming that users should be more careful and protect 
themselves. It will need economic tools to set the right incentives for 
companies to take reasonable steps to make their products secure. In 
consequence, manufacturers will need to slow down a bit and work on the 
security basics, before adding ever more features. “Firms should recognise 
that, if the courts do not force the liability issue, public opinion will” 
(Economist, 2017a). 
 
Niels Ferguson, Bruce Schneier and Tadayoshi Kohno are amongst the 
world’s most renowned computer security experts. In their milestone book 
Cryptography Engineering (2010), they, too, criticise the software 
industry’s lax attitude, comparing it to the automotive industry, where a 
defect leads to a manufacturer recalling the affected vehicles, whereas 
software companies just waive all liability. They go on: 
 

“We find it instructive to look at the best engineering quality control 
system in the world: 

the airline industry.” (p. 119) 
 
So, what does aeronautical engineering teach us? How can software be 
developed and be deployed with acceptable confidence that it is 
sufficiently secure — despite its obvious complexity? 
 
Software complexity 
 
Oh, right – complexity. The increase in software complexity over the past 
decades has been dramatic, the actual level of which is best understood 
by looking at the number of lines of code that a typical product contains 
(data: NASA, 2009; Wiels et al, 2012; Economist, 2017b; Information is 
Beautiful, 2019b). 
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On a logarithmic scale, the graph provides for some great insights. First, 
each era seems to have a natural code size; it inflates by an order of 
magnitude every eleven years. Second, code sizes are remarkably similar 
despite belonging to such different products as computer operating 
systems, aircraft, or even a pick-up truck. The year-2000 developments F-
22 and Linux 2.2 required around 2m lines of code; their 2010 successors 
F-35 and Windows 7 needed ten to fifteen times as many. 
 
It seems that code size is less driven by the need for functionality than by 
the possibilities that hardware and development environments offer. In 
the 1990s, a development team could handle about a million lines of 
code; tooling allowed them to juggle with twenty million lines around 
2010 and by now, the 100m mark has been passed. You need not be a 
fundamentalist system administrator to question the need for such code 
bases. Does a pick-up truck really need 150m lines of code, ten times as 
much as a Boeing 787? (Hint: do not forget that the Ford can drive 
backwards without the help of a tow truck.) 
 
Requirements and documentation 
 
But let’s return to the safety culture. The Airbus 320’s 10m lines of code 
result in an incredibly safe and reliable product, something only few 
people would say about Windows 3.1, even if it has only 2.5m lines of 
code. The above diagram with code sizes disproves any correlation 
between total code complexity and system reliability. One can develop a 
highly complex system and yet make it safe. 
 
The key is the classification of code into categories of criticality. 
Depending on the consequences when thing go awry, code must be 
developed with a different mindset from the very beginning of writing 
down requirements — that is, for many modern-day pieces of software, 
requirements need to be written down at all. For more critical code, one 
cannot and must not take some well-known libraries, use their functions 
without any sanitisation of inputs and outputs, and link the whole library 
into the product — also adding functionality that no-one wants or even 
knows about. 
 
There is a perceived conflict of interest between modern-day software 
development and requirements engineering. There are evangelists of agile 
methods who turn green if one mentions the word requirements. 
Requirements are so waterfall. 
 
The argument goes like this: Experience shows that software tends to be 
late, over budget, and expensive to maintain. The root cause is the  
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system’s complexity, making it impossible to do it right from the 
beginning; the process must be iterative. User feedback is crucial all the 
way along the development path. 
 
Sounds familiar? It does — but the argument dates back to 1968. These 
were exactly the points being discussed at the NATO Software Engineering 
Conference (NATO, 1969). A solution was developed and first described by 
Royce (1970). It aims to avoid costly architecture redesign and code 
refactoring by carefully looking at the user requirements. The name by 
which it became known: the waterfall model. 
 
Agile methods do not mean to start to code without a plan and to 
improvise on the code until it works. It will work, and probably even so in 
most of the normal use cases. But it will definitely fail if something 
unforeseen happens. Something like a wormable vulnerability of the likes 
of EternalBlue. Agile methods do mean to iterate through high-level and 
low-level requirements and code fragments in parallel, in order to arrive 
at a consistent set of both, even if the full scope could not be overseen at 
the beginning. The irony in it: all of the concepts were already there by 
the end of the 1960s. Evolutionary prototyping, throw-away prototyping, 
continuous end-user interaction: all there (see for example Comer, 1990). 
 
Now, this is a good thing. The software certification processes that 
brought us the safety of aviation are based on the waterfall model, 
including requirements, design, coding, and integration activities, and 
formal documentation. But is does not prescribe the actual life cycle 
model. Nowhere, it demands that requirements are finished to remain 
untouched before coding starts. The model allows for iterative 
development — moreover, it even encourages to do so. And then it forces 
one to document new insights, new designs, new concepts, new 
requirements. It will thus enforce multiple revisions of milestone reviews 
and quality gates. And isn’t that exactly what agile methods are trying to 
teach us? 
 

“Some questions are easy to answer if you can find the person that 
actually implemented the code (…); it becomes much more difficult when 
that person is no longer with the company and there is no documentation 

available.” (Higaki, p. 87) 
 
Certification criteria 
 
So, there we have it. Software may have grown in size and complexity, 
but the problems have been around for more than half a century — thus 
their causes do not lie in complexity. Large, complex systems can be  
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developed for safety and reliability, and — as aviation demonstrates — 
successful certification is possible. The key is to categorise and classify 
parts of the full system according to probability and the consequences of 
failure — and to adapt the level of test, evaluation and scrutiny 
accordingly. Iterative development is inevitable — but not a solution to 
the challenges of complexity. And documentation is mandatory. 
 
In aviation, all of this is prescribed by the Software Considerations in 
Airborne Systems and Equipment Certification (DO-178C, 2011). The 
categories of criticality are named ‘software levels’, ranging from A for the 
most critical to E for the least critical. Objectives on the software 
development process, its tooling, testing, and traceability are listed in a 
series of tables, containing between 26 (for level D) and 70 (for level A) 
items. 
 
The equivalent in cybersecurity are the Common Criteria for Information 
Technology Security Evaluation (CC, 2017), jointly developed by twelve 
governmental agencies from different countries. It introduces ‘evaluation 
assurance levels’, ranging from 1 for systems that are only functionally 
tested to 7 for those that are formally verified design and tested. They 
differ in meaning from DO-178C’s software levels, but the impact on 
evaluation of the product is highly similar: with increasing criticality, there 
are more criteria to be met. 
 
The DO-178C document is not very long, considering its importance and 
impact. After all, it only lists objectives and does not prescribe a detailed 
methodology. The downside is that DO-178C cannot be used as a 
reference guide. Organisations will need to learn how to work with it and 
develop their own processes that meet all the objectives. Yet, the 
aerospace industry is large. There are numerous companies that are 
proficient in developing airborne software, from small component 
suppliers to large platform integrators. 
 
The CC are a bit more elaborate, but like DO-178C, they are not a tutorial 
either. The document describes what to demonstrate — not how to get 
there. And there is by far not as much experience as the aerospace 
industry has with DO-178C and its predecessors. The CC website lists all 
certified products to date: a total of 2,575 in August 2019, almost half of 
which are from the single product category of smart cards and the 
corresponding readers. To this day, CC-experienced companies are hard 
to find. 
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Making cyber secure 
 
The similarities between airborne system certification and information 
technology security certification allow for intuitive application of 
procedures and practices from aerospace to the cybersecurity problem. A 
good Common-Criteria process starts with internal preparation. It is 
important to understand the need for certification, and to identify the 
parts of the product that should be evaluated (the Target of Evaluation). 
In parallel, the security functional requirements (SFRs) for the product 
should be identified, and the level of evaluation should be chosen, 
implying a series of security assurance requirements (SARs). In all of this, 
experience with the evaluation of failure condition categories and software 
levels from DO-178C — together with its certification objectives — can be 
applied. 
 
When the process is formally started, an evaluation lab — an independent 
third party that does the actual security evaluation and produces a report 
for the national authority — and the certification authority itself must be 
involved, highly similar to the involvement of the airworthiness authorities 
in the aviation case. The Plan for Software Aspects of Certification (PSAC) 
from DO-178C can serve as a nice template for an evaluation plan in 
cybersecurity. 
 
Further down the road, evidence must be produced to demonstrate how 
each of the functional and assurance requirements is met. Software 
requirements data, design descriptions, configuration management plans 
and verification plans again provide the framework for what to document, 
and how. Depending on feedback and questions from the evaluation lab, 
some rework will be necessary until the product is actually certified by the 
authorising body. 
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Whether the formal process is worth the effort is difficult to say upfront — 
that is why it all starts with understanding the need for certification. It is 
very well possible — and may in many cases be more rational — to apply 
the Common-Criteria processes, leverage the DO-178C experience, but 
refrain from getting the actual certification. 
 
Stop history from repeating 
 
Because: an information technology product does not become more 
secure when it is evaluated according to CC assurance level 7, than when 
doing so for level 1 or 2 — or not evaluating at all. Common criteria 
certification is optional and — combined with the vendor’s freedom to 
decide which parts of a product are to be evaluated and at which level — 
basically a marketing tool. But despite being mandatory, airborne systems 
also do not become safer from certification according to software level A. 
It only indicates that the system was deemed more critical and that more 
effort went into the evaluation process. The evaluation and certification 
processes help to ask the right questions, to make sure nothing gets 
forgotten. In the end, the mindset and actual way of working of the 
developers, driven by the habits and expectations of the organisation, is 
what counts. This is what makes for a safety culture. 
 
Aviation has one. The many companies that make for the industry are in 
an excellent position to apply their experience in creating more secure 
information technology products. Life cycle models that include system 
requirements analysis and maintenance, design documentation, high- and 
low-level requirement engineering, and requirement-to-code traceability, 
are perfectly suited to create common-criteria documentation on the fly. 
And to stop the history of late, over-budget, poorly maintainable and 
insecure software from repeating. To stop screens from going black. With 
or without a certificate. 
 

How ACTRANS can help 
 
ACTRANS combines decades of experience in the European aerospace 
industry with current-day knowledge from the cybersecurity industry. We 
can help companies to improve their products’ cybersecurity by supporting 
them along the way of understanding Common Criteria and developing the 
right safety culture. We contribute in identifying a security target and 
preparing the business case for an evaluation process. If formal 
certification is worthwhile, ACTRANS can find the right evaluation lab, 
coach in-house employees on the process, and support in achieving 
effective reviews. 
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