

 1

From Aviation Safety to Cyber Resilience
Leveraging aerospace industry’s century-long safety culture for
cybersecurity

Summary
Software development has a poor safety record. The number of
cyberattacks hat risen dramatically since 2004, clearly outrunning the
growth of the internet itself. In parallel, aviation has a proven track record
of achieving the highest level of safety and serves as an example even in
the information technology industry itself. Despite increasing software
complexity, the existing certification processes for airborne equipment
manage to assure extremely reliable software. The more recent
certification process for information technology products applies similar
methods of formal development but is not as widespread as its aviation
counterpart. More importantly, the aerospace safety culture is missing. As
such, information technology can benefit from applying the aerospace
industry’s methods, procedures and mindset to its development process.
Due to the similarities of both formal development worlds, the transfer will
be easier than it may seem.

History repeating I

It started Tuesday June 27th, 2017. In the offices of A.P. Møller-Maersk
around the world, computer screens started to go black. Within a few
hours, global operations of the world’s largest container shipping company
— accounting for 20% of the market — had been stopped. It took the
company ten days to revive its computer system; ten days, during which
operations were mainly done by hand. And had it not been for a power
outage in Ghana, causing a single computer to have been offline when
disaster struck, thus retaining a sole copy of crucial infrastructure data, it
would have been even worse (see Greenberg, 2018, for the full story on
Maersk).

Incidents are almost always the result of an unfortunate concatenation of
weak spots, human error and negligence, and design flaws. Plus a bit of
bad luck. In Maersk’s case, the latter was the use of a single computer
with accounting software in the Ukraine — nothing that could reasonably
have been prevented, unless you are a fundamentalist system
administrator who forbids any software that is not rolled out through the
central office (if you are, make sure you are not accountable for
operational success and profit). But the design flaw was of a different
order of magnitude. Dubbed EternalBlue, it was a highly critical
vulnerability in Microsoft Windows, allowing ransomware like NotPetya —

 2

the one that hit Maersk — to spread throughout a network without human
interaction. But no-one could have known. Or could they?

It started Friday May 12th, 2017, early in the morning. By the end of the
day, more than 200,000 computers all around the world had been
affected. The banking industry of Spain seemed to have been a hot spot,
likewise the national health system in the UK. German railways were
affected, too, displaying red ransomware messages on passenger
information screens at stations across the country. And had it not been for
a single hacker, who found a kill switch in the form of an unregistered
internet domain, the damage caused by WannaCry would have been even
larger.

Let’s cut it short. No-one could have known. Or could they?

The vulnerability had been publicly announced in April 2017; a patch by
Microsoft had been available even before that, albeit not for Windows XP,
for which security support had ceased. Which takes us another step back:
human error and negligence. The thing that could reasonable have been
prevented was continuing to use outdated, unsupported and unpatched
Windows XP machines beyond their expiry dates.

History repeating II

But there is no safety culture in software. Software is cheap. Software
needs to be updated anyway. Software vendors are not liable for
anything. Software cannot do any physical harm. As long as we do not
build our critical infrastructure on software, as long as our economy does
not depend on it, as long as we do not network security systems or
medical equipment — what can go wrong? Oh, wait…

Weak spots, human error and negligence, design flaws and bad luck hit
aviation, too. On March 10th, 2019, Ethiopian Airlines flight 302 crashed
six minutes after take-off, killing all 157 people aboard. On October 29th,
2018, Lion Air flight 610 had crashed 12 minutes after take-off, killing all
189 people aboard. Both flights were operated by a Boeing 737 MAX
series aircraft, which had entered into service on May 22nd, 2017.

In hindsight, one may question the response after the first accident. Yet,
the Lion Air crash was the first indication of a fundamental problem with
the design of the new aircraft and thorough investigations were started,
leading to a first report in November 2017 and improvement work at
Boeing’s. The similarities between the Ethiopian Airlines and the Lion Air
accidents were immediately evident when the second happened. Many

 3

operators stopped operating their 737 MAX aircraft the day after, and the
global fleet was grounded within a week. The aircraft will not fly again
until the design flaw has been removed. The airframe manufacturer is
responsible for offering the solution and each individual aircraft will not
take off before the necessary patches have been applied.

Safety culture

There is a safety culture in aviation — although one is tempted to say:
there still is, as the 737 MAX story represents a narrative of fundamental
flight mechanical changes to an existing, originally extremely mature and
safe airframe, the consequences of which are compensated for by
software. And there is no safety culture in software (see Travis, 2019, for
an interesting analysis on this).

One can look at the statistics. Since the early 1970s, the number of
casualties in civil aviation has consistently decreased, despite the
industry’s growth, especially in emerging markets (data: Aviation Safety,
2019).

Cybersecurity tells a different story. Using data breaches as an indication
for system compromises by hacking or negligence, the numbers have
been rising since 2004 and have literally exploded during the past three
years (data: author’s analysis from Information is Beautiful, 2019a).

 4

Obviously, information technology has grown at an even more spectacular
rate than commercial aviation has. But at the same time, airline accidents
do not go unnoticed, whereas there is a substantial number of unreported
cases in cyberattacks. Looking at the ratio of incidents to industry size for
the past fifteen years and indexing at 2004, the security problem of
information technology is undeniable (reference market size data:
Internet World Stats, World Bank, 2019).

Vendor accountability

A safety culture goes hand in hand with vendor accountability. In April
2017, The Economist pinpointed it:

“The software industry has for decades disclaimed liability for the harm
when its products go wrong.”

 5

The cybersecurity problem cannot be resolved with more technical
wizardry and claiming that users should be more careful and protect
themselves. It will need economic tools to set the right incentives for
companies to take reasonable steps to make their products secure. In
consequence, manufacturers will need to slow down a bit and work on the
security basics, before adding ever more features. “Firms should recognise
that, if the courts do not force the liability issue, public opinion will”
(Economist, 2017a).

Niels Ferguson, Bruce Schneier and Tadayoshi Kohno are amongst the
world’s most renowned computer security experts. In their milestone book
Cryptography Engineering (2010), they, too, criticise the software
industry’s lax attitude, comparing it to the automotive industry, where a
defect leads to a manufacturer recalling the affected vehicles, whereas
software companies just waive all liability. They go on:

“We find it instructive to look at the best engineering quality control
system in the world:

the airline industry.” (p. 119)

So, what does aeronautical engineering teach us? How can software be
developed and be deployed with acceptable confidence that it is
sufficiently secure — despite its obvious complexity?

Software complexity

Oh, right – complexity. The increase in software complexity over the past
decades has been dramatic, the actual level of which is best understood
by looking at the number of lines of code that a typical product contains
(data: NASA, 2009; Wiels et al, 2012; Economist, 2017b; Information is
Beautiful, 2019b).

 6

On a logarithmic scale, the graph provides for some great insights. First,
each era seems to have a natural code size; it inflates by an order of
magnitude every eleven years. Second, code sizes are remarkably similar
despite belonging to such different products as computer operating
systems, aircraft, or even a pick-up truck. The year-2000 developments F-
22 and Linux 2.2 required around 2m lines of code; their 2010 successors
F-35 and Windows 7 needed ten to fifteen times as many.

It seems that code size is less driven by the need for functionality than by
the possibilities that hardware and development environments offer. In
the 1990s, a development team could handle about a million lines of
code; tooling allowed them to juggle with twenty million lines around
2010 and by now, the 100m mark has been passed. You need not be a
fundamentalist system administrator to question the need for such code
bases. Does a pick-up truck really need 150m lines of code, ten times as
much as a Boeing 787? (Hint: do not forget that the Ford can drive
backwards without the help of a tow truck.)

Requirements and documentation

But let’s return to the safety culture. The Airbus 320’s 10m lines of code
result in an incredibly safe and reliable product, something only few
people would say about Windows 3.1, even if it has only 2.5m lines of
code. The above diagram with code sizes disproves any correlation
between total code complexity and system reliability. One can develop a
highly complex system and yet make it safe.

The key is the classification of code into categories of criticality.
Depending on the consequences when thing go awry, code must be
developed with a different mindset from the very beginning of writing
down requirements — that is, for many modern-day pieces of software,
requirements need to be written down at all. For more critical code, one
cannot and must not take some well-known libraries, use their functions
without any sanitisation of inputs and outputs, and link the whole library
into the product — also adding functionality that no-one wants or even
knows about.

There is a perceived conflict of interest between modern-day software
development and requirements engineering. There are evangelists of agile
methods who turn green if one mentions the word requirements.
Requirements are so waterfall.

The argument goes like this: Experience shows that software tends to be
late, over budget, and expensive to maintain. The root cause is the

 7

system’s complexity, making it impossible to do it right from the
beginning; the process must be iterative. User feedback is crucial all the
way along the development path.

Sounds familiar? It does — but the argument dates back to 1968. These
were exactly the points being discussed at the NATO Software Engineering
Conference (NATO, 1969). A solution was developed and first described by
Royce (1970). It aims to avoid costly architecture redesign and code
refactoring by carefully looking at the user requirements. The name by
which it became known: the waterfall model.

Agile methods do not mean to start to code without a plan and to
improvise on the code until it works. It will work, and probably even so in
most of the normal use cases. But it will definitely fail if something
unforeseen happens. Something like a wormable vulnerability of the likes
of EternalBlue. Agile methods do mean to iterate through high-level and
low-level requirements and code fragments in parallel, in order to arrive
at a consistent set of both, even if the full scope could not be overseen at
the beginning. The irony in it: all of the concepts were already there by
the end of the 1960s. Evolutionary prototyping, throw-away prototyping,
continuous end-user interaction: all there (see for example Comer, 1990).

Now, this is a good thing. The software certification processes that
brought us the safety of aviation are based on the waterfall model,
including requirements, design, coding, and integration activities, and
formal documentation. But is does not prescribe the actual life cycle
model. Nowhere, it demands that requirements are finished to remain
untouched before coding starts. The model allows for iterative
development — moreover, it even encourages to do so. And then it forces
one to document new insights, new designs, new concepts, new
requirements. It will thus enforce multiple revisions of milestone reviews
and quality gates. And isn’t that exactly what agile methods are trying to
teach us?

“Some questions are easy to answer if you can find the person that
actually implemented the code (…); it becomes much more difficult when
that person is no longer with the company and there is no documentation

available.” (Higaki, p. 87)

Certification criteria

So, there we have it. Software may have grown in size and complexity,
but the problems have been around for more than half a century — thus
their causes do not lie in complexity. Large, complex systems can be

 8

developed for safety and reliability, and — as aviation demonstrates —
successful certification is possible. The key is to categorise and classify
parts of the full system according to probability and the consequences of
failure — and to adapt the level of test, evaluation and scrutiny
accordingly. Iterative development is inevitable — but not a solution to
the challenges of complexity. And documentation is mandatory.

In aviation, all of this is prescribed by the Software Considerations in
Airborne Systems and Equipment Certification (DO-178C, 2011). The
categories of criticality are named ‘software levels’, ranging from A for the
most critical to E for the least critical. Objectives on the software
development process, its tooling, testing, and traceability are listed in a
series of tables, containing between 26 (for level D) and 70 (for level A)
items.

The equivalent in cybersecurity are the Common Criteria for Information
Technology Security Evaluation (CC, 2017), jointly developed by twelve
governmental agencies from different countries. It introduces ‘evaluation
assurance levels’, ranging from 1 for systems that are only functionally
tested to 7 for those that are formally verified design and tested. They
differ in meaning from DO-178C’s software levels, but the impact on
evaluation of the product is highly similar: with increasing criticality, there
are more criteria to be met.

The DO-178C document is not very long, considering its importance and
impact. After all, it only lists objectives and does not prescribe a detailed
methodology. The downside is that DO-178C cannot be used as a
reference guide. Organisations will need to learn how to work with it and
develop their own processes that meet all the objectives. Yet, the
aerospace industry is large. There are numerous companies that are
proficient in developing airborne software, from small component
suppliers to large platform integrators.

The CC are a bit more elaborate, but like DO-178C, they are not a tutorial
either. The document describes what to demonstrate — not how to get
there. And there is by far not as much experience as the aerospace
industry has with DO-178C and its predecessors. The CC website lists all
certified products to date: a total of 2,575 in August 2019, almost half of
which are from the single product category of smart cards and the
corresponding readers. To this day, CC-experienced companies are hard
to find.

 9

Making cyber secure

The similarities between airborne system certification and information
technology security certification allow for intuitive application of
procedures and practices from aerospace to the cybersecurity problem. A
good Common-Criteria process starts with internal preparation. It is
important to understand the need for certification, and to identify the
parts of the product that should be evaluated (the Target of Evaluation).
In parallel, the security functional requirements (SFRs) for the product
should be identified, and the level of evaluation should be chosen,
implying a series of security assurance requirements (SARs). In all of this,
experience with the evaluation of failure condition categories and software
levels from DO-178C — together with its certification objectives — can be
applied.

When the process is formally started, an evaluation lab — an independent
third party that does the actual security evaluation and produces a report
for the national authority — and the certification authority itself must be
involved, highly similar to the involvement of the airworthiness authorities
in the aviation case. The Plan for Software Aspects of Certification (PSAC)
from DO-178C can serve as a nice template for an evaluation plan in
cybersecurity.

Further down the road, evidence must be produced to demonstrate how
each of the functional and assurance requirements is met. Software
requirements data, design descriptions, configuration management plans
and verification plans again provide the framework for what to document,
and how. Depending on feedback and questions from the evaluation lab,
some rework will be necessary until the product is actually certified by the
authorising body.

 10

Whether the formal process is worth the effort is difficult to say upfront —
that is why it all starts with understanding the need for certification. It is
very well possible — and may in many cases be more rational — to apply
the Common-Criteria processes, leverage the DO-178C experience, but
refrain from getting the actual certification.

Stop history from repeating

Because: an information technology product does not become more
secure when it is evaluated according to CC assurance level 7, than when
doing so for level 1 or 2 — or not evaluating at all. Common criteria
certification is optional and — combined with the vendor’s freedom to
decide which parts of a product are to be evaluated and at which level —
basically a marketing tool. But despite being mandatory, airborne systems
also do not become safer from certification according to software level A.
It only indicates that the system was deemed more critical and that more
effort went into the evaluation process. The evaluation and certification
processes help to ask the right questions, to make sure nothing gets
forgotten. In the end, the mindset and actual way of working of the
developers, driven by the habits and expectations of the organisation, is
what counts. This is what makes for a safety culture.

Aviation has one. The many companies that make for the industry are in
an excellent position to apply their experience in creating more secure
information technology products. Life cycle models that include system
requirements analysis and maintenance, design documentation, high- and
low-level requirement engineering, and requirement-to-code traceability,
are perfectly suited to create common-criteria documentation on the fly.
And to stop the history of late, over-budget, poorly maintainable and
insecure software from repeating. To stop screens from going black. With
or without a certificate.

How ACTRANS can help

ACTRANS combines decades of experience in the European aerospace
industry with current-day knowledge from the cybersecurity industry. We
can help companies to improve their products’ cybersecurity by supporting
them along the way of understanding Common Criteria and developing the
right safety culture. We contribute in identifying a security target and
preparing the business case for an evaluation process. If formal
certification is worthwhile, ACTRANS can find the right evaluation lab,
coach in-house employees on the process, and support in achieving
effective reviews.

 11

References
Aviation Safety (2019). Airliner fatalities by period. <https://aviation-
safety.net/statistics/period/stats.php>.

CC (2017). Common Criteria for Information Technology Security
Evaluation 3.1 (5). <https://www.commoncriteriaportal.org/cc/>.

Comer, E.R. (1990). “Alternative software life cycle models” in Anderson,
Ch. and Dorfman, M. (eds): Aerospace Software Engineering. Washington
DC: AIAA, pp. 69-86.

DO-178C (2011). Software Considerations in Airborne Systems and
Equipment Certification. Washington DC: RTCA.

Economist (2017a). “How to manage the computer-security threat”
(printed as “The myth of cyber-security”) in: The Economist April 8th
2017. <https://www.economist.com/leaders/2017/04/08/how-to-
manage-the-computer-security-threat>.

Economist (2017b). “Computer security is broken from top to bottom”
(printed as “Why everything is hackable”) in: The Economist April 8th
2017. <https://www.economist.com/science-and-
technology/2017/04/08/computer-security-is-broken-from-top-to-
bottom>.

Ferguson, N., Schneier, B. and Kohno, T. (2010). Cryptography
Engineering. Indianapolis: Wiley, pp. 115–119.

Greenberg, A. (2018). “The untold story of NotPetya, the most
devastating cyberattack in history” in: Wired August 22nd 2018.
<https://www.wired.com/story/notpetya-cyberattack-ukraine-russia-
code-crashed-the-world>.

Higaki, W.H. (2010). Successful Common Criteria Evaluations. Higaki.

Information is Beautiful (2019a). Data breaches (public).
<https://docs.google.com/spreadsheets/d/1Je-
YUdnhjQJO_13r8iTeRxpU2pBKuV6RVRHoYCgiMfg>.

Information is Beautiful (2019b). Lines of code.
<https://docs.google.com/spreadsheets/d/1s9u0uprmuJvwR2fkRqxJ4W5
Wfomimmk9pwGTK4Dn_UI>.

 12

Internet World Stats (2019). Internet growth statistics.
<https://www.internetworldstats.com/emarketing.htm>.

NASA (2009). Study on Flight Software Complexity. Dvorak, D.L. (ed).
<https://www.nasa.gov/pdf/418878main_FSWC_Final_Report.pdf>.

NATO (1969). Software Engineering. Naur, P. and Randell, B. (eds).
<http://homepages.cs.ncl.ac.uk/brian.randell/NATO/nato1968.pdf>.

Royce, W.W. (1970). “Managing the development of large software
systems” in: Proceedings of the IEEE WESCON 1970. <http://www-
scf.usc.edu/~csci201/lectures/Lecture11/royce1970.pdf>.

Travis, G. (2019). “How the Boeing 737 Max disaster looks to a software
developer” in: IEEE Spectrum April 18th, 2019.
<https://spectrum.ieee.org/aerospace/aviation/how-the-boeing-737-max-
disaster-looks-to-a-software-developer>.

Wiels, V., Delmas, R., Doose, D., Garoche, P.-L., Cazin, J. and Durrieu, G.
(2012). “Formal verification of critical aerospace software” in: Aerospace
Lab Journal 4 (10). <http://www.aerospacelab-
journal.org/sites/www.aerospacelab-journal.org/files/AL04-10_1.pdf>.

World Bank (2019). “Air transport, registered carrier departures
worldwide” in: Data.
<https://data.worldbank.org/indicator/IS.AIR.DPRT>.

